Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor

Quantum simulation, one of the most promising applications of a quantum computer, is currently being explored intensely using the variational quantum eigensolver. The feasibility and performance of this algorithm depend critically on the form of the wave-function ansatz. Recently in Ref. [Nat. Commun. 10, 3007 (2019)], an algorithm termed ADAPT-VQE was introduced to build system-adapted ansätze with substantially fewer variational parameters compared to other approaches. This algorithm relies heavily on a predefined operator pool with which it builds the ansatz. However, Ref. [Nat. Commun. 10, 3007 (2019)] did not provide a prescription for how to select the pool, how many operators it must contain, or whether the resulting ansatz will succeed in converging to the ground state. In addition, the pool used in that work leads to state-preparation circuits that are too deep for a practical application on near-term devices. Here, we address all these key outstanding issues of the algorithm. We present a hardware-efficient variant of ADAPT-VQE that drastically reduces circuit depths using an operator pool that is guaranteed to contain the operators necessary to construct exact ansätze. Moreover, we show that the minimal pool size that achieves this scales linearly with the number of qubits. Through numerical simulations on H4, LiH and H6, we show that our algorithm (“qubit-ADAPT”) reduces the circuit depth by an order of magnitude while maintaining the same accuracy as the original ADAPT-VQE. A central result of our approach is that the additional measurement overhead of qubit-ADAPT compared to fixed-ansatz variational algorithms scales only linearly with the number of qubits. Our work provides a crucial step forward in running algorithms on near-term quantum devices. ...

April 28, 2021

A universal quantum gate set for transmon qubits with strong ZZ interactions

High-fidelity single- and two-qubit gates are essential building blocks for a fault-tolerant quantum computer. While there has been much progress in suppressing single-qubit gate errors in superconducting qubit systems, two-qubit gates still suffer from error rates that are orders of magnitude higher. One limiting factor is the residual ZZ-interaction, which originates from a coupling between computational states and higher-energy states. While this interaction is usually viewed as a nuisance, here we experimentally demonstrate that it can be exploited to produce a universal set of fast single- and two-qubit entangling gates in a coupled transmon qubit system. To implement arbitrary single-qubit rotations, we design a new protocol called the two-axis gate that is based on a three-part composite pulse. It rotates a single qubit independently of the state of the other qubit despite the strong ZZ-coupling. We achieve single-qubit gate fidelities as high as 99.1% from randomized benchmarking measurements. We then demonstrate both a CZ gate and a CNOT gate. Because the system has a strong ZZ-interaction, a CZ gate can be achieved by letting the system freely evolve for a gate time tg=53.8 ns. To design the CNOT gate, we utilize an analytical microwave pulse shape based on the SWIPHT protocol for realizing fast, low-leakage gates. We obtain fidelities of 94.6% and 97.8% for the CNOT and CZ gates respectively from quantum progress tomography. ...

March 23, 2021

Measurement Error Mitigation for Variational Quantum Algorithms

Variational Quantum Algorithms (VQAs) are a promising application for near-term quantum processors, however the quality of their results is greatly limited by noise. For this reason, various error mitigation techniques have emerged to deal with noise that can be applied to these algorithms. Recent work introduced a technique for mitigating expectation values against correlated measurement errors that can be applied to measurements of 10s of qubits. We apply these techniques to VQAs and demonstrate its effectiveness in improving estimates to the cost function. Moreover, we use the data resulting from this technique to experimentally characterize measurement errors in terms of the device connectivity on devices of up to 20 qubits. These results should be useful for better understanding the near-term potential of VQAs as well as understanding the correlations in measurement errors on large, near-term devices. ...

October 16, 2020

Microwave-based arbitrary cphase gates for transmon qubits

Superconducting transmon qubits are of great interest for quantum computing and quantum simulation. A key component of quantum chemistry simulation algorithms is breaking up the evolution into small steps, which naturally leads to the need for nonmaximally entangling, arbitrary CPHASE gates. Here we design such microwave-based gates using an analytically solvable approach leading to smooth, simple pulses. We use the local invariants of the evolution operator in SU(4) to develop a method of constructing pulse protocols, which allows for the continuous tuning of the phase. We find cphase fidelities of more than 0.999 and gate times as low as 100ns. ...

February 20, 2020

Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm

The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the H2 and LiH molecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth. ...

January 28, 2020

Fast high-fidelity entangling gates for spin qubits in Si double quantum dots

Implementing high-fidelity two-qubit gates in single-electron spin qubits in silicon double quantum dots is still a major challenge. In this work we employ analytical methods to design control pulses that generate high-fidelity entangling gates for quantum computers based on this platform. Using realistic parameters and initially assuming a noise-free environment, we present simple control pulses that generate cnot, cphase, and cz gates with average fidelities greater than 99.99% and gate times as short as 45 ns. Moreover, using the local invariants of the system’s evolution operator, we show that a simple square pulse generates a cnot gate in less than 27 ns and with a fidelity greater than 99.99%. Last, we use the same analytical methods to generate two-qubit gates locally equivalent to √CNOT and √CZ that are used to implement simple two-piece pulse sequences that produce high-fidelity cnot and cz gates in the presence of low-frequency noise. ...

July 9, 2019